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Abstract
We present buffered coscheduling, a new methodology

to multitask parallel jobs in a message-passing environment

and to develop parallel programs that can pave the way to

the efficient implementation of a distributed operating system.

Buffered coscheduling is based on three innovative techniques:

communication buffering, strobing, and non-blocking commu-

nication. By leveraging these techniques, we can perform ef-

fective optimizations based on the global status of the parallel

machine rather than on the limited knowledge available locally

to each processor.

The advantages of buffered coscheduling include higher re-

source utilization, reduced communication overhead, efficient

implementation of flow-control strategies and fault-tolerant

protocols, accurate performance modeling, and a simplified yet

still expressive parallel programming model. Preliminary ex-

perimental results show that buffered coscheduling is very ef-

fective in increasing the overall performance in the presence

of load imbalance and communication-intensive workloads.

Keywords: Parallel Job Scheduling, Distributed Operat-
ing Systems, Communication Protocols.

1 Introduction
The scheduling of parallel jobs has long been an active area

of research [6, 7]. It is a challenging problem because the per-
formance and applicability of parallel scheduling algorithms
is highly dependent upon factors at different levels: workload,
parallel programming language, operating system (OS), and
machine architecture.

Time-sharing scheduling algorithms are particularly at-
tractive because they can provide good response time without
migration or prediction on the execution time of the parallel
jobs. However, time-sharing has the drawback that communi-

cating processes must be scheduled simultaneously to achieve

good performance. With respect to performance, this is a crit-
ical problem because the communication overhead and the
scheduling overhead to wake up a sleeping process dominate
the communication time on most parallel machines [11].

Over the years, researchers have developed parallel
scheduling algorithms that can be loosely organized into three
main classes, according to the degree of coordination between
processors: explicit coscheduling, local scheduling and implicit

or dynamic coscheduling .
On the one end of the spectrum, explicit coscheduling [5]

ensures that the scheduling of communicating jobs is coor-
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dinated by constructing a static global list of the order in
which jobs should be scheduled. A simultaneous context-
switch is then required across all processors. Unfortunately,
this straightforward methodology is neither scalable nor re-
liable. Furthermore, explicit coscheduling requires that the
schedule of communicating processes be precomputed, which
complicates the coscheduling of client-server applications and
requires pessimistic assumptions about which processes com-
municate with one another. Finally, explicit coscheduling of
parallel jobs interacts poorly with interactive jobs and jobs
performing I/O [12].

At the other end of the spectrum is local scheduling, where
each processor independently schedules its processes. While
this methodology is attractive due to its ease of construction,
the performance of fine-grained communication jobs can be
orders of magnitude worse than with explicit coscheduling be-
cause the scheduling is not coordinated across processors [8].

An intermediate approach initially developed at UC Berke-
ley and MIT in recent years is implicit or dynamic coschedul-
ing [1, 4, 14]. With implicit coscheduling, each local scheduler
makes independent decisions that dynamically coordinate the
scheduling actions of cooperating processes across processors.
These actions are based on local events that occur naturally
within communicating applications. For example, on message
arrival, the receiving processor speculatively assumes that the
sender is active and will probably send more messages in the
near future. The implicit information available for implicit
coscheduling consists of two inherent events: response time

and message arrival [1]. An in-depth performance analysis of
coscheduling strategies can be found in [13].

The main drawbacks of dynamic and implicit coscheduling
include (1) the limited programming model supported, (2) the
limitation of a localized flow-control strategy, (3) the non-
trivial implementation of fault tolerance, and (4) the lack of
a reliable performance model of the execution time of parallel
jobs due to the dynamic interleaving of several jobs. Some
of these limitations are successfully addressed in [13] with
a technique called Periodic Boost. Rather than sending an
interrupt for each incoming message, the kernel periodically
examines the status of the network interface, thus reducing
the overhead for communication-intensive workloads.

In contrast, we present a new methodology which exploits
the positive aspects of both explicit and implicit coschedul-
ing using three innovative techniques: communication buffer-
ing (a technique similar to Periodic Boost), strobing, and
non-blocking, one-sided communication. By leveraging these



techniques, we can perform effective optimizations based on
the status of the parallel machine rather than on the limited
knowledge available locally to each processor.

The benefits of buffered coscheduling include higher re-
source utilization, dramatic simplification of the run-time
support, reduced communication overhead, efficient global
implementation of flow-control strategies and fault-tolerant
protocols, accurate performance modeling, and a simpli-
fied yet still expressive parallel programming model (a la

CISC→RISC instruction-set simplification).

The rest of the paper is organized as follows. Sec-
tion 2 characterizes important properties which are shared by
many parallel applications and which inspired our buffered
coscheduling approach. Buffered coscheduling itself is de-
scribed in Section 3, and some preliminary results are pre-
sented in Section 4. Finally, we present our conclusions in
Section 5.

2 Resource Utilization of Parallel Pro-

grams
In Figure 1, we show the global processor and network u-

tilization (i.e., the number of active processors and the frac-
tion of active links) during the execution of a transpose FFT
algorithm on a parallel machine with 256 processors. These
processors are connected with an indirect interconnection net-
work using state-of-the-art routers. Based on these figures,
there is obviously an uneven and inefficient use of system

resources. During the two computational phases of the trans-
pose, the network is idle. Conversely, when the network is
actively transmitting messages, the processors are not doing
any useful work.
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Figure 1: Resource Utilization in a Transpose FFT.

Another important characteristic shared by many parallel
programs is their access pattern to the network. The vast ma-
jority of parallel applications display bursty communication

patterns with alternating spikes of impulsive communication
with periods of inactivity [15].

Thus, there exists a significant amount of communication
bandwidth which can be made available for other purposes.

3 Buffered Coscheduling
To improve the resource utilization of parallel program-

s, we propose to multitask parallel jobs. That is, instead of
overlapping computation with communication and I/O with-
in a single parallel program, all the communication and I/O
which arises from a set of parallel programs can be overlapped
with the computations in those programs. To implement this
multitasking, we use a buffered coscheduling approach which
relies on three techniques. First, the communication gener-
ated by each processor is buffered and performed at the end
of regular intervals (or time-slices) in order to amortize the

communication and scheduling overhead. By delaying com-
munication, we allow for the global scheduling of the commu-
nication pattern. Second, a strobing mechanism performs a
total exchange of control information at the end of each time-
slice so that massively parallel machines may move away from
isolated scheduling algorithms [1] (where processors make de-
cisions based solely on their local status and a limited view of
the remote status) to more outward-looking or global schedul-
ing algorithms. Third, non-blocking, one-sided communica-
tion primitives decouple communication and synchronization,
thus allowing the communication pattern to be scheduled with
additional degrees of freedom.

This approach represents a significant improvement over
existing work reported in the literature. It allows for the im-
plementation of a global scheduling policy, as done in explicit
coscheduling, while maintaining the overlapping of computa-
tion and communication provided by implicit coscheduling.

3.1 Communication Buffering
Rather than incurring communication and scheduling over-

head on a per-message basis, we propose to accumulate the
communication messages generated by each processor and
amortize the overhead over a set of messages. Specifically,
the cost of the system calls necessary to access the kernel
data structures for communication is amortized over a set of
system calls rather than being incurred on each individual
system call. This implies that buffered coscheduling can be
tolerant to the potentially high latencies that can be intro-
duced in a kernel call or in the initialization of the network
interface card (NIC) that can reside on a slow I/O bus. In
addition to amortizing communication and scheduling over-
head, we can also implement zero-copy (or low-copy, if we
desire fault-tolerant communication) communication. As a
result, our approach to communication buffering can achieve
performance comparable to user-level network interfaces (i.e.,
OS-bypass protocols) [2] without using specialized hardware.

3.2 Strobing
The uneven resource utilization and the periodic, bursty

communication patterns generated by many parallel applica-
tions can be exploited to perform a total exchange of informa-
tion and a synchronization of processors at regular intervals
with little additional cost. This provides the parallel machine
with the capability of filling in communication holes generat-
ed by parallel applications.

In order to provide the above capability, we propose a
strobing mechanism to support the scheduling of a set of
parallel jobs which share a parallel machine. Let us assume
that each parallel job runs on the entire set of p processors,
i.e., jobs are time-sharing the whole machine. The strobing
mechanism performs an optimized total-exchange of control
information (which we call heartbeat) and triggers the down-
loading of any buffered packets into the network.

Figure 2 shows how computation and communication can
be scheduled over a generic processor. At the beginning of
the heartbeat, t0, the kernel downloads control packets into
the network for a total exchange. During the execution of the
barrier synchronization, the user process regains control of the
processor; and at the end of it, the kernel schedules the pend-
ing communication, accumulated in the previous time-slice
(before t0), to be delivered in the current time-slice [t0, t2].
From the control information exchanged between t0 and t1,
the processor will know (at t1) the number of incoming pack-
ets that it is going to receive in the communication time-slice



as well as the sources of the packets and will start the down-
loading of outgoing packets.
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Figure 2: Scheduling Computation and Communication.

Communication accumulated in the time-slice up to t0 is

downloaded into the network between t1 and t2 (after the

barrier synchronization). δ ≡ length of a time-slice = t2 − t0.

This strategy can be easily extended to deal with space-
sharing where different regions run different sets of program-
s [10]. In this case too, all the different regions are synchro-
nized by the same heartbeat.

3.3 Blocking vs. Non-Blocking
One of the most limiting constraints in the implementation

of time-sharing algorithms is the need to schedule simultane-
ously communicating processes. This problem is exacerbat-
ed with blocking communication, which imposes an explicit
handshake between sender and receiver.

We argue that this problem can eliminated, or at least
alleviated, by slightly modifying the communication structure
of parallel jobs and replacing blocking communication with
non-blocking primitives or one-sided communication.
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Figure 3: (a) Message Passing (b) 1-Sided Communication.

As Figure 3 shows, the dynamics of a message-passing pro-
gram can be represented as a two-dimensional graph with
processes on the horizontal axis and time on the vertical one.
Arrows between processes represent communication between
a sender and a receiver. In Figure 3(a), three processes ex-
change messages. For the sake of convenience, let us assume
that there is no dependency between the messages (i.e., they
can be sent in any order). Using a traditional, blocking,
message-passing programming style, we must define a com-
munication schedule even if one is not required, e.g., A sends
to B, B receives from A and sends to C, C receives from B

and sends to A.
With one-sided communication (or non-blocking commu-

nication primitives, in general), the actual message transmis-
sion and the synchronization are decoupled, leaving many
degrees of freedom to re-arrange message transmission. In
Figure 3(b), the same communication pattern is delimited by
two barriers and includes the communication executed with

put primitives. The communication can be executed in any
order, provided that the information is delivered at the end
of the synchronization calls. Lastly, in contrast to explicit
coscheduling, communicating processes do not need to be si-
multaneously scheduled to perform the communication.

4 Experimental Results
Our preliminary experimental results include a working

implementation of a representative subset of MPI-2 on a
detailed (register-level) simulation model [16]. The simula-
tion environment includes a standard version of MPI-2 and a
multitasking version which implements the main features of
buffered coscheduling.

Because the design space of our problem is too large to
explore exhaustively, we fix the workload and system char-
acteristics and vary the computational granularity and load
imbalance. As in [4], our workloads consist of a collection
of single-program multiple-data (SPMD) parallel jobs that
alternate phases of purely local computation with phases of
interprocess communication. A parallel job generated by one
such program consists of a group of P processes where each
process is mapped on a processor throughout the execution.
Processes compute locally for a time uniformly selected in
the interval (g −

v

2
, g + v

2
). By adjusting g, we model parallel

programs with different computational granularities; and by
varying v, we change the variance for a particular computa-
tional granularity g, and thus, the degree of load imbalance
across processors.

The communication phase of our workloads consists of an
opening barrier, followed by an optional sequence of pairwise
communication events separated by small amounts of local
computation, c, and finally an optional closing barrier. We
consider two communication patterns: Barrier and Trans-

pose. Barrier consists of only the opening barrier and thus
contains no additional dependencies. This workload can be
used to analyze how buffered coscheduling responds to load
imbalance. Transpose is a communication-intensive workload.
It tries to emulate the communication pattern generated by
the FFT transpose algorithm [9], where each process accesses
data on all other processes.

We consider three parallel jobs with the same computa-
tional granularity, load imbalance, and communication pat-
tern, arriving at the same time in the system. We fix the
communication granularity, c, at 8 µs. The number of com-
munication/computation iterations is scaled so that each job
runs for approximately 1 second in a dedicated environment.
The system consists of 32 processors and each job requires 32
processes (i.e., jobs are only time-shared).

We assume a processor speed of 500 MHz and a network of
32 processors interconnected in a 5-dimensional cube topology
with performance characteristics similar to those of Myrinet
routing and network cards [3]. This network features a one-
way data rate of about 1 Gbit/s and a base network latency of
few µs. The simulator models the following at register level:
the congestion inside the network and at the network interface
and the routing and flow-control protocols.

The run-time support for this simulated platform includes
a standard version of a significant subset of MPI-2 and a
multitasking version of the same subset that performs the
strobing algorithm at the end of each time-slice, as outlined
in Section 3. It is worth noting that the multitasking MPI-2
version is much simpler than the sequential one because the



buffering of the communication primitives greatly simplifies
the run-time support.

4.1 Resource Utilization and Throughput
Figures 4(a)-(c) and 4(d)-(f) illustrate the communication

and computation characteristics of the Barrier and Transpose

benchmarks, respectively, as a function of the computational
granularity, load imbalance and context-switch penalty. Each
bar shows the fraction of time spent in one of the follow-
ing states, averaged over all processors: computing, context-
switching and idling.

For each of the benchmarks, we consider time-slices of 500
µs, 1 ms and 2 ms. And for each of the time-slice alternatives,
the computational granularity varies from a coarser-grained
50 ms to a finer-grained 100 µs. Finally, for each of the com-
putational granularities, the load imbalance is non-existent,
i.e., v = 0 (no variance), v = 1 ∗ g (the variance is equal to
the computational granularity), and v = 2 ∗ g (the variance is
equal to twice the computational granularity, i.e., high degree
of load imbalance).

Figures 4(g) and (h) show the breakdown for the Barri-

er and Transpose workloads when they are run in dedicated
mode on the standard MPI-2 run-time support (i.e., a single
job is run until completion without multitasking).

For Figures 4(a)-(f), a black square under a bar highlight-
s the configurations where multitasking produces better re-
source utilization than batch scheduling. For instance, run-
ning a Transpose job in batch mode with a computational
granularity of 100 µs and no load imbalance (i.e., Figure 4(h),
the “0” bar in the rightmost group of bars) produces 35% pro-
cessor utilization. When we run the same job but multitasked
with two other jobs of the same kind, the utilization can be
as high as 60% (see Figure 4(d)), a 71% improvement in uti-
lization.

The results reported in [13] consider mixed workloads with
little load imbalance and a limited percentage of execution
time performing communication (i.e., < 26%). For their
workloads, the slowdown with respect to the sequential case
varies between 30% and 180% in the best case. In contrast, in
our workloads, the fraction of time spent in communication
ranges up to 70% (Transpose with a computational grain
size of 100 µs). Our experimental results show that in a large
majority of cases, we experience speedup rather than slow-
down. And even in the worst case, the slowdown is less than
10%. Though the results are not directly comparable, the
performance difference between our scheduling methodology
and those reported in [13] is significant enough to lead us to
believe that buffered coscheduling can bridge the gap between
the “faster response time but lower throughput” of existing
coscheduling algorithms and the “slower response time but
higher throughput” of batch scheduling.

4.2 Sensitivity Analysis
By examining the breakdowns of each bar, we can see sev-

eral important trends. First, as the load imbalance of the
program increases (i.e., moving to the right within each group
of three bars with the same computational granularity), the
idle time increases.

Second, the time-slice length is a critical parameter in de-
termining overall system performance. A short time-slice can
achieve very good load balancing even in the presence of high-
ly unbalanced jobs. The downside is that it amplifies the
context-switch latency. On the other hand, a long time-slice
can virtually hide all the context-switch latency but cannot

reduce the load imbalance, in particular when there are fine-
grained computations.

Third, in Figures 4(a) and (d), we see that using a relative-
ly small time-slice in our multitasking environment produces
higher processor utilization than when a single job runs in
a dedicated environment in 11 out of 18 cases for Barrier

and 16 out of 18 for Transpose. For most of the other cas-
es (i.e., v = 0 or perfectly balanced jobs), running a single
job results in marginally better performance because buffered
coscheduling must “pay” the context-switch penalty without
improving the load balance because the load is already bal-
anced. On the other hand, in the presence of load imbalance,
job multitasking can smooth the differences in load, resulting
in both higher processor and network utilization.

Fourth, the experimental results show that overall perfor-
mance is sensitive to time-slice length. For example, for the
time-slices we chose for our experiments, the smallest time-
slice (500 µs) produced the best overall performance. Thus,
this implies that selecting the “correct” time-slice length is
very important.

As a rule of thumb, multitasking leads to good performance
as long as the average computational grain size is larger than
the time-slice and the time-slice, on its turn, is sufficiently
larger than the context-switch penalty.

As a final note, our preliminary experimental results do
not account for the effects of the memory hierarchy on the
working sets of different jobs. As a consequence, buffered
coscheduling requires a larger main memory in order to avoid
memory swapping. We consider this as the main limitation
of our approach.

5 Conclusion and Future Work
In this paper, we presented buffered coscheduling, a new

methodology to multitask parallel jobs on a parallel computer
in order to achieve efficient resource utilization and improved
system throughput. Buffered coscheduling addresses the main
limitation of explicit coscheduling — the high latency needed
to perform a global context switch. It also provides a simple
framework to increase resource utilization, simplify the design
of the run-time support, enhance fault tolerance, and perform
effective global optimizations.

While batch scheduling results in better system through-
put, batching is particularly unattractive for interactive jobs
due to poor response times. On the other hand, existing
coscheduling algorithms produce better response times but
result in slowdown, and hence, reduced system throughput.
In contrast, buffered coscheduling not only provides better
response times but also increases system throughput.

We plan to extend these preliminary results by considering
the effects of the memory hierarchy with real applications
rather than synthetic workloads. We also plan to implement
a multitasking version of MPI-2 in a Linux cluster.
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